问题标题:
已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点且和L相切的圆的方程
问题描述:
已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点且和L相切的圆的方程
笹尾勤回答:
在直角坐标系中做出各图.发现L过C1的焦点,而求的圆要与L相切,那么(0,0)为所求的圆上的点,那么过点(0,0)且与L垂直的直线方程为Y=2X,则直径在其上,所以圆心也在上面,设圆心为P(X1,Y1),P在Y=2X上,所以Y1=2*X1----...
点击显示
数学推荐
热门数学推荐