问题标题:
【已知函数f(x)=loga(x-5)/(x+5)(a>0)设g(x)=1+loga(x-3)若f(x)=g(x)有解求a的取值范围过程答案】
问题描述:
已知函数f(x)=loga(x-5)/(x+5)(a>0)设g(x)=1+loga(x-3)若f(x)=g(x)有解求a的取值范围过程答案
黄国策回答:
a>0
f(x)=loga[(x-5)/(x+5)],定义域<-5或x>5
g(x)=1+loga[(x-3)],定义域x>3
f(x)=g(x)有解,根据定义域解必须x>5
loga[(x-5)/(x+5)]=1+loga[(x-3)]
loga[(x-5)/(x+5)]-loga[(x-3)]=1
loga[(x-5)/((x+5)(x-3))]=1
(x-5)/((x+5)(x-3))=a
a(x+5)(x-3)=x-5
ax²+(2a-1)x-5(3a-1)=0
a>0
y=ax²+(2a-1)x-5(3a-1)开口向上,对称轴x=2-1/a
当对称轴x=2-1/a≤5时,必须保证f(5)=25a-5(2a-1)-5(3a-1)<0,无解;
当对称轴x=2-1/a>5时,必须保证极值点-5(3a-1)-(2a-1)²/(4a)<0,
-15a+5-a+1-1/(4a)<0
64a²-24a+1>0
a²-3/8a>-1/64
(a-3/16)²>5/256
a-3/16<-√5/16,或a-3/16>√5/16
a<(3-√5)/16,或a>(3+√5)/16
又:a>0,a≠1
∴a∈(0,(3-√5)/16)U((3+√5)/16,1)U(1,+无穷大)
点击显示
其它推荐
热门其它推荐