问题标题:
等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y+b^x+r(b>0)且b≠1,b,r均为常数)的图像上.(1)求r的值;(2)当b=2时,记bn=n/2an(n∈N+)求数列{bn}的前n项的Tn(3)当b=3时,记Cn=2an/
问题描述:
等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y+b^x+r(b>0)且b≠1,b,r均为常数)的图像上.
(1)求r的值;
(2)当b=2时,记bn=n/2an(n∈N+)求数列{bn}的前n项的Tn
(3)当b=3时,记Cn=2an/(an+1)(3an+1),求证:C1+C2+...+Cn
李杨回答:
(1)
点(n,Sn)均在函数y=b^x+r
n=1,a1=b+r(1)
n=2,
S2=b^2+r
a2+(b+r)=b^2+r
a2=b(b-1)(2)
n=3,
S3=b^3+r
a3+b^2+r=b^3+r
a3=b^2(b-1)(3)
a3/a2=a2/a1
b^2(b-1)/[b(b-1)]=b(b-1)/(b+r)
b(b+r)=b(b-1)
br=-b
r=-1
(2)
b=2
Sn=2^n-1
an=Sn-S(n-1)=2^(n-1)
bn=(n/2)an
=(1/2)(n.2^(n-1))
consider
1+x+x^2+..+x^n=(x^(n+1)-1)/(x-1)
1+2x+..+nx^(n-1)=[(x^(n+1)-1)/(x-1)]'
=[nx^(n+1)-(n+1)x^n+1]/(x-1)^2
putn=2
summation(1:1->n)i.2^(i-1)
=n.2^(n+1)-(n+1).2^n+1
=1+(n-1).2^n
bn=(n/2)an
=(1/2)(n.2^(n-1))
Tn=b1+b2+...+bn
=(1/2){summation(1:1->n)i.2^(i-1)}
=(1/2)[1+(n-1).2^n]
(3)
b=3
Sn=3^n-1
an=Sn-S(n-1)=2.3^(n-1)
cn=2an/(an+1)(3an+1)
=4.3^(n-1)/[(1+2.3^(n-1)).(1+2.3^n)]
=1/(1+2.3^(n-1))-1/(1+2.3^n)
c1+c2+...+cn
=1/3-1/(1+2.3^n)
点击显示
数学推荐
热门数学推荐