问题标题:
【计算抛物线y^2=4x从顶点(0,0)到这曲线上的另一点(1,2)的弧长√2+ln(1+√2)】
问题描述:
计算抛物线y^2=4x从顶点(0,0)到这曲线上的另一点(1,2)的弧长√2+ln(1+√2)
高岭松回答:
这是曲线积分问题;
y²=4x==>x=y²/4
==>dx/dy=y/2
==>dx=(y/2)*dy
在(x,y)点的弧长微元为:
dL=√[(dx)²+(dy)²
=√[(y/2*dy)²+(dy)²]
=√(y²/4+1)*dy
L=[0,2]∫[√(y²/4+1)*dy]
作变量代换y=2tanu==>dy=2sec²u,原式化为:
L=[0,π/4]∫[√(tan²y+1)*2sec²udu]
=[0,π/4]∫(2sec³udu)
=[0,π/4]∫(2/(1-sin²u)²*cosdu)
=[0,π/4]∫[2/(1-sinu)²(1+sinu)²dsinu]
=[0,π/4]∫1/2*1/[(2+sinu)/(1+sinu)²+(2-sinu)/(1-sinu)²]*du
=1/2*[0,π/4]∫[1/(1+sinu)²+1/(1+sinu)+1/(1-sinu)²+1/(1-sinu)]*du
=1/2*[-1/(1+sinu)+ln(1+sinu)+1/(1-sinu)-ln(1-sinu)]|[0,π/4]
=1/2*(2√2+ln[(2+√2)/(2-√2)]
=√2+ln(√2+1)
点击显示
数学推荐
热门数学推荐