字典翻译 问答 小学 数学 若a=2/1-(-1)n次方,(n为正整数),且a,b互为相反数,b,c互为倒数,试求ab+b的n次方–(b-c)的2n次方的值.
问题标题:
若a=2/1-(-1)n次方,(n为正整数),且a,b互为相反数,b,c互为倒数,试求ab+b的n次方–(b-c)的2n次方的值.
问题描述:

若a=2/1-(-1)n次方,(n为正整数),且a,b互为相反数,b,c互为倒数,试求ab+b的n次方–(b-c)的2n次方的值.

蒋琦庄回答:
  a=2/[1-(-1)^n]分母不为零,   所以1-(-1)^n≠0,n为奇数,(-1)^n=-1   a=2/[1-(-1)]=2/2=1   a.b互为相反数,b=-a=-1   b.c互为倒数,c=1/b=-1   ab+b^n-(b-c)^2n   =1*(-1)+(-1)^n-[-1-(-1)]^2n   =-1-1-0   =-2
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文