问题标题:
【1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2用数学归纳法证明用数学归纳法证明1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2】
问题描述:
1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2用数学归纳法证明
用数学归纳法证明1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2
孟德欣回答:
当n=1时,左边=1³=1,右边=1²=1,等式成立.假设当n=k时,等式成立,即1³+2³+3³+...+k³=(1+2+3+...+k)²=k²(k+1)²/4,则当n=k+1时,1³+2³+3³+...+k³+(k+1)...
丁坚回答:
k²(k+1)²/4怎得来的??
孟德欣回答:
等差数列求和:1+2+3+...+k=k(k+1)/2。
点击显示
数学推荐
热门数学推荐