字典翻译 问答 高中 数学 数学变式教学概念?
问题标题:
数学变式教学概念?
问题描述:

数学变式教学

概念?

顾巧论回答:
  数学教学思维能力培养之我见   对学生思维能力的培养是数学教学三大能力之一.在平时的教学中,既要注重逻辑思维能力培养的同时,还应该注重观察力、直觉力、想象力的培养.特别是直觉思维能力的培养由于长期得不到重视,学生在学习的过程中对数学的本质容易造成误解,认为数学是枯燥乏味的;同时对数学的学习也缺乏取得成功的必要的信心,从而丧失数学学习的兴趣.培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需求.   一、数学直觉思维的阐释   数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察.   直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知.例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知.而直觉的研究对象则是抽象的数学结构及其关系.庞加莱说:直觉不必建立在感觉明白之上.感觉不久便会变的无能为力.例如,我们仍无法想象千角形,但我们能够通过直觉一般地思考多角形,多角形把千角形作为一个特例包括进来.由此可见直觉是一种深层次的心理活动,没有具体的直观形象和可操作的逻辑顺序作思考的背景.正如迪瓦多内所说:这些富有创造性的科学家与众不同的地方,在于他们对研究的对象有一个活全生的构想和深刻的了解,这些构想和了解结合起来,就是所谓’直觉’……,因为它适用的对象,一般说来,在我们的感官世界中是看不见的.   从思维方式上来看,思维可以分为逻辑思维和直觉思维.长期以来人们刻意的把两者分离开来,其实这是一种误解,逻辑思维与直觉思维从来就不是割离的.有一种观点认为逻辑重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学逻辑中是否会有直觉成分?数学直觉是否具有逻辑性?比如在日常生活中有许多说不清道不明的东西,人们对各种事件作出判断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用.数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化.数学最初的概念都是基于直觉,数学在一定程度上就是在问题解决中得到发展的,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用.   一个数学证明可以分解为许多基本运算或许多演绎推理元素,一个成功的数学证明是这些基本运算或演绎推理元素的一个成功的组合,仿佛是一条从出发点到目的地的通道,一个个基本运算和演绎推理元素就是这条通道的一个个路段,当一个成功的证明摆在我们面前开始,逻辑可以帮助我们确信沿着这条路必定能顺利的到达目的地,但是逻辑却不能告诉我们,为什么这些路径的选取与这样的组合可以构成一条通道.事实上,出发不久就会遇上叉路口,也就是遇上了正确选择构成通道的路段的问题.庞加莱认为,即使能复写出一个成功的数学证明,但不知道是什么东西造成了证明的一致性,……,这些元素安置的顺序比元素本身更加重要.笛卡尔认为在数学推理中的每一步,直觉力都是不可缺少的.就好似我们平时打篮球,要靠球感一样,在快速运动中来不及去作逻辑判断,动作只是下意识的,而下意识的动作正是在平时训练产生的一种直觉.   在教育过程中,老师由于把证明过程过分的严格化、程序化.学生只是见到一具僵硬的逻辑外壳,直觉的光环被掩盖住了,而把成功往往归功于逻辑的功劳,对自己的直觉反而不觉得.学生的内在潜能没有被激发出来,学习的兴趣没有被调动起来,得不到思维的真正乐趣.《中国青年报》曾报道,约30%的初中生学习了平面几何推理之后,丧失了对数学学习的兴趣,这种现象应该引起数学教育者的重视与反思.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考