字典翻译 问答 小学 数学 求圆心在直线y=-2x上,且与直线y=1-x相切于点(2,-1)的圆的标准方程
问题标题:
求圆心在直线y=-2x上,且与直线y=1-x相切于点(2,-1)的圆的标准方程
问题描述:

求圆心在直线y=-2x上,且与直线y=1-x相切于点(2,-1)的圆的标准方程

刘关俊回答:
  圆心在直线y=-2x上,那么可以设圆心为(m,-2m)   那么圆的标准方程可以表示为:(x-m)^2+(y+2m)^2=r^2   且圆与直线y=1-x相切,那么原先到该直线的距离d=|m-2m-1|/√2=r   即:(m+1)^2/2=r^2   又因为切点在圆上,所以(2,-1)满足圆的方程,代入得:   (2-m)^2+(-1+2m)^2=r^2=(m+1)^2/2   展开整理得:m^2-2m+1=0   所以,m=1   那么圆的标准方程为:   (x-1)^2+(y+2)^2=2
刘彩珠回答:
  为什么要设圆心为(m,-2m)
刘关俊回答:
  因为要求圆的标准方程啊,标准方程要知道圆的圆心和半径,那么我们需要根据题目条件把圆心和半径求出来,因为圆心在y=-2x上,那么圆心的坐标肯定满足这个直线方程,假设圆心的横坐标为x=m,那么纵坐标为y=-2x=-2m,所以可以设圆心为(m,-2m)
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文