问题标题:
数列(an)中a1=2,a(n+1)=(根号2-1)(an+2)(1).求an(2)若数列{bn}中,b1=2,b(n+1)=(3bn+4)/(2bn+3),证明根号2<bn<a(4n-3)
问题描述:
数列(an)中a1=2,a(n+1)=(根号2-1)(an+2)(1).求an(2)若数列{bn}中,b1=2,b(n+1)=(3bn+4)/(2bn+3),证明根号2<bn<a(4n-3)
胡大伟回答:
(1)
a(n+1)=(根号2-1)(an+2)整理得a(n+1)-√2=(根号2-1)(an-√2)
所以an=√2((√2-1)^n+1)
(2)
不等式左边可用数学归纳法做:
已知B1=2>√2,
设当i=k(k>=1),Bk>√2,则i=k+1时:
B(k+1)-√2=(3Bk+4)/(2Bk+3)-√2=((3-2√2)Bk+4-3√2)/(2Bk+3)>(3√2-4+4-3√2)/(2Bk+3)=0,成立
因此对i>=1,(i为整数),Bi>√2.
由此可知,B(n+1)-Bn=(4-2Bn^2)/(2Bn+3)
点击显示
数学推荐
热门数学推荐