问题标题:
求证1/sin^2a+3/cos^2a>=4+2根号下31/sin²a+3/cos²a=(sin²a+cos²a)/sin²a+3(sin²a+cos²a)/cos²a=1+cos²a/sin²a+3+3sin²a/cos²a=4+cos²a/sin²a+3sin²a/cos²a≥4+2√[(cos&am
问题描述:
求证1/sin^2a+3/cos^2a>=4+2根号下3
1/sin²a+3/cos²a
=(sin²a+cos²a)/sin²a+3(sin²a+cos²a)/cos²a
=1+cos²a/sin²a+3+3sin²a/cos²a
=4+cos²a/sin²a+3sin²a/cos²a
≥4+2√[(cos²a/sin²a)(3sin²a/cos²a)]=4+2√3
罗建军回答:
1/sin²a+3/cos²a
=csc²a+3sec²a
=cot²a+1+3(tan²a+1)
=4+cot²a+3tan²a≥4+2√(cot²a*3tan²a)=4+2√3.
点击显示
数学推荐
热门数学推荐