问题标题:
【利用柱面坐标系求三重积分z=x^2+y^2z=2y.求∫∫∫Zdv我想了很久了】
问题描述:
利用柱面坐标系求三重积分z=x^2+y^2z=2y.求∫∫∫Zdv
我想了很久了
贝超回答:
该立体投影到xoy面为x²+y²=2y,即Dxy:x²+(y-1)²=1,其极坐标方程为:r=2sinθ∫∫∫zdv=∫∫(∫[0--->2y]zrdz)drdθ=∫∫(∫[0--->2rsinθ]zrdz)drdθ=1/2∫∫z²r|[0--->2rsinθ]drd...
点击显示
数学推荐
热门数学推荐