问题标题:
分式数学问题1.已知x+1/y=z+1/x=1,求y+1/z的值2.解方程:(x-4)/(x-5)-(x-5)/(x-6)=(x-7)/(x-8)-(x-8)(x-9)
问题描述:
分式数学问题
1.
已知x+1/y=z+1/x=1,求y+1/z的值
2.
解方程:(x-4)/(x-5)-(x-5)/(x-6)=(x-7)/(x-8)-(x-8)(x-9)
单列回答:
x+1/y=1则:y=1/(1-x)z+1/x=1则:z=1-1/x=(x-1)/x,所以,1/z=x/(x-1)=1+1/(x-1)=1-1/(1-x)所以y+1/z=1(x-4)/(x-5)-(x-5)/(x-6)=(x-7)/(x-8)-(x-8)(x-9)即:1+1/(x-5)-1-1/(x...
点击显示
数学推荐
热门数学推荐