问题标题:
【如图所示,在边长为2的菱形ABCD中,∠DAB=60°,点E为AB中点,点F是AC上一动点,则EF+BF的最小值为_________.(提示:根据轴对称的性质)】
问题描述:
如图所示,在边长为2的菱形ABCD中,∠DAB=60°,点E为AB中点,点F是AC上一动点,则EF+BF的最小值为_________.(提示:根据轴对称的性质) |
康海贵回答:
连接DB,DE,设DE交AC于M,连接MB,DF,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有点F运动到点M时,取等号,△ABD中,AD=AB,∠DAB=60°,∴△ABD是等边三角形.∵E为AB的中点,∴DE⊥AB,∴AE=AD=1,DE==,∴EF+BF的最小值为.
点击显示
数学推荐
热门数学推荐