问题标题:
已知函数f(x)=x^3+bx^2+cx+d的图像过点p(0.2),且在点M(-1.f(-1))处的切线方程为6x-y+7=0求函数y=f(x)的解析式
问题描述:
已知函数f(x)=x^3+bx^2+cx+d的图像过点p(0.2),且在点M(-1.f(-1))处的切线方程为6x-y+7=0
求函数y=f(x)的解析式
桑勇回答:
f(x)=x^3+bx^2+cx+d的导数方程f’(x)=3x^2+2bx+c
图像过点p(0.2)有d=2.
点M(-1.f(-1))处的切线方程为6x-y+7=0即y=6x+7
点M(-1.f(-1))也是原函数上的点.
将x=-1代入两种形式的导数方程和原方程3-2b+c=-6+7=-1+b-c+2
求出b=c=2
原解析式y=f(x)=x^3+2x^2+2x+2
不理解就追问,理解了请采纳!
点击显示
数学推荐
热门数学推荐