问题标题:
在三角形ABC中,D.E分别是AB.AC边上的点,且BD=CE.M.N分别是BE.CD边上的中点,过M.N的直线分别交AB.AC于点F.G.求证:AF=AG
问题描述:
在三角形ABC中,D.E分别是AB.AC边上的点,且BD=CE.M.N分别是BE.CD边上的中点,过M.N的直线分别交AB.AC于点F.G.求证:AF=AG
陆朝阳回答:
证明:取BC的中点O,连接OM,ON.
∵OB=OC,MB=ME.
∴OM∥CE,得∠OMN=∠AGM;OM=CE/2.(三角形中位线的性质)
同理:ON∥BD,得∠ONM=∠AFN;ON=BD/2.
又CE=BD,则OM=ON,∠OMN=∠ONM.
∴∠AGM=∠AFN(等量代换).
所以,AF=AG.(等角对等边)
点击显示
数学推荐
热门数学推荐