问题标题:
对于任意给定的自然数n,必存在一个自然数k,使得k*n之积包含了0,1,2,3,4,5,6,7,8,9的每个数码请证明这个数学命题.(注:这里的自然数指的是正整数)
问题描述:
对于任意给定的自然数n,必存在一个自然数k,使得k*n之积包含了0,1,2,3,4,5,6,7,8,9的每个数码
请证明这个数学命题.(注:这里的自然数指的是正整数)
孙贵之回答:
对于任意自然数n,有n=2^b*5^c*m(b,c是整数且b≥0,c≥0)
设m的位数为d,则构建一个自然数k,k=5^b*2^c*(10……020……030……040……050……060……070……080……090),其中每两个位置之间的零的个数为b+c+d.
不难证明,对于任意n,在乘以5^b*2^c之后,位数不会超过b+c+d
且,对于任意n,在乘以5^b*2^c之后,去掉后面的零之后最后一位一定是不为5的奇数.
由于1,3,7,9乘以1-9末位可以得出1-9的每个数码,而最后一位又已经确定是0
所以所列出的k可以满足条件.
对于任意确定的自然数n,可知,b,c与d一定是有限的,则k一定是自然数.即为所求.
即对任意给定的自然数n,必存在一个自然数k,使条件成立.
点击显示
数学推荐
热门数学推荐