问题标题:
在三棱锥P-ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点.则下列说法错误的是()A.当AE⊥PB时,△AEF-定为直角三角形B.当AF⊥PC时,△AEF-定为直角三角形C.当EF∥平面
问题描述:
在三棱锥P-ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点.则下列说法错误的是()
A.当AE⊥PB时,△AEF-定为直角三角形
B.当AF⊥PC时,△AEF-定为直角三角形
C.当EF∥平面ABC时,△AEF-定为直角三角形
D.当PC⊥平面AEF时,△AEF-定为直角三角形
李中回答:
A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,∴AE⊥BC,可得:AE⊥平面PBC,∴AE⊥EF,∴△AEF-定为直角三角形,正确.
B.当AF⊥PC时,无法得出△AEF-定为直角三角形,因此不正确;
C.当EF∥平面ABC时,平面PBC∩ABC=BC,可得EF∥BC,∵PA⊥底面ABC,AB⊥BC,∴BC⊥平面PAB,∴BC⊥AE,因此EF⊥AE,则△AEF-定为直角三角形,正确;
D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE,∴AE⊥平面PBC,∴AE⊥EF,因此△AEF-定为直角三角形,正确.
故选:B.
点击显示
数学推荐
热门数学推荐