问题标题:
【(Ⅰ)设n维向量组α1,α2,…,αs线性无关,β1,β2,…,βt线性无关,且s+t>n,证明:存在非零n维向量ξ,ξ既可由α1,α2,…,αs线性表示,又可由β1,β2,…,βt线性表示;(Ⅱ)已】
问题描述:
(Ⅰ)设n维向量组α1,α2,…,αs线性无关,β1,β2,…,βt线性无关,且s+t>n,证明:存在非零n维向量ξ,ξ既可由α1,α2,…,αs线性表示,又可由β1,β2,…,βt线性表示;
(Ⅱ)已知α1=(1,2)T,α2=(2,3)T,β1=(3,4)T,β2=(4,5)T,求既可由α1,α2线性表示,又可由β1,β2线性表示的所有非零向量ξ.
倪鹤南回答:
(Ⅰ)证:因s+t>n,故n维向量组α1,α2,…αs,β1,β2,…βt必线性相关,即有不全为零的数k1,k2,…,ks,l1,l2,…lt,使 k1α1+k2α2+…+ks...
点击显示
其它推荐