问题标题:
【高二数学】解不等式log2(x+1)+log1/4(x-1)>log4(2x-1)解不等式log2(x+1)+log1/4(x-1)>log4(2x-1)说明:log2(x+1)中底数为2,真数为x+1log1/4(x-1)中底数为1/4,真数为x-1log4(2x-1)中底数为4,真数为2x-1答案
问题描述:
【高二数学】解不等式log2(x+1)+log1/4(x-1)>log4(2x-1)
解不等式log2(x+1)+log1/4(x-1)>log4(2x-1)
说明:log2(x+1)中底数为2,真数为x+1
log1/4(x-1)中底数为1/4,真数为x-1
log4(2x-1)中底数为4,真数为2x-1
答案是{x|1
还有一题变式:
解不等式log2(x+1)+log1/2(x-1)>2
答案是{x|1
曹虹回答:
log2(x+1)+log1/4(x-1)〉log4(2x-1)
log4(x+1)^2-log4(x-1)〉log4(2x-1)
(x+1)^2/(x-1)>2x-1
x+1>0
x-1>0
2x-1>0
点击显示
数学推荐
热门数学推荐