问题标题:
如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.(1)求证:PB∥平面AEC;(2)求直线BP与平面PAC所成的角.
问题描述:
如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(1)求证:PB∥平面AEC;
(2)求直线BP与平面PAC所成的角.
何立新回答:
(1)证明:连接BD交AC于O,连接EO.在△DPB中,E是PD的中点,又O是BD的中点,∴EO∥PB.…又EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC …(6分)(2)由PA⊥平面ABCD,BA⊂平面ABCD,∴PA⊥BA,又BA⊥AC,AC∩...
点击显示
数学推荐
热门数学推荐