问题标题:
如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且BC=CD,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说
问题描述:
如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且
(1)判断OB和BP的数量关系,并说明理由;
(2)若⊙O的半径为2,求AE的长.
方原拍回答:
(1)OB=BP.
理由:连接OC,
∵PC切⊙O于点C,
∴∠OCP=90°,
∵OA=OC,∠OAC=30°,
∴∠OAC=∠OCA=30°,
∴∠COP=60°,
∴∠P=30°,
在Rt△OCP中,OC=12
点击显示
数学推荐
热门数学推荐