问题标题:
问三道微积分题目急findfirstderivativex^3-xy+y^2=4f(x)=sec^2tanxf(x)=ln(xe^7x)
问题描述:
问三道微积分题目急
findfirstderivative
x^3-xy+y^2=4
f(x)=sec^2tanx
f(x)=ln(xe^7x)
宋春红回答:
郭敦顒回答:
(x^3-xy+y^2)′=3x^2-(xy)′+2y
∵(xy)′=y+x
∴(x^3-xy+y^2)′=3x^2-x+y.
f(x)=sec^2tanx,应表为f(x)=sec^2xtanx,于是
f(x)′=(sec^2xtanx)′=(sec^2x)′tanx+sec^2x(tanx)′
=2secx(secx)′tanx+sec^2xsec^2x
=2sec^2xtan^2x+1/cos^4x.
f(x)=ln(xe^7x)
f(x)′=[ln(xe^7x)]′=1/(xe^7x)′=1/[e^7x+xe^7x(7x)′]
=1/(e^7x+7xe^7x)
点击显示
数学推荐
热门数学推荐