字典翻译 问答 初中 数学 阅读下列材料:配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如
问题标题:
阅读下列材料:配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如
问题描述:

阅读下列材料:

配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如:解方程x2-4x+4=0,则(x-2)2=0,∴x1=x2=2.已知x2-2x+y2+4y+5=0,求x,y的值,则有(x2-2x+1)+(y2+4y+4)=0,∴(x-1)2+(y+2)2=0,解得x=1,y=-2.解方程x2-2x-3=0,则有x2-2x+1-1-3=0,∴(x-1)2=4,解得x=3或x=-1.

根据以上材料解答下列各题:

(1)若a2+4a+a=0,求a的值;

(2)若x2-4x+y2+6y+13=0,求(x+y)-2015的值;

(3)若a2-2a-8=0,求a的值;

(4)若a,b,c表示△ABC的三边,且a2+b2+c2-ac-ab-bc=0,试判断△ABC的形状,并说明理由.

毛大恒回答:
  (1)a2+4a+a=a2+5a=0,即a(a+5)=0,   解得:a=0或a=-5;   (2)∵x2-4x+y2+6y+13=(x-2)2+(y+3)2=0,   ∴x-2=0,y+3=0,即x=2,y=-3,   则(x+y)-2015=(2-3)-2015=(-1)-2015=-1;   (3)a2-2a-8=0,变形得:a2-2a=8,即a2-2a+1=9,   ∴(a-1)2=9,即a-1=±3,   则a=4或-2;   (4)变形得:2a2+2b2+2c2-2ac-2ab-2bc=(a-b)2+(a-c)2+(b-c)2=0,   可得a-b=0,a-c=0,b-c=0,即a=b=c,   在△ABC为等边三角形.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 音乐
  • 体育
  • 美术