问题标题:
如图,四边形OABC为直角梯形,BC∥OA,A(9,0),C(0,4),AB=5.点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动.其中一个动点
问题描述:
如图,四边形OABC为直角梯形,BC∥OA,A(9,0),C(0,4),AB=5. 点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.
(1)求直线AB的解析式;
(2)t为何值时,直线MN将梯形OABC的面积分成1:2两部分;
(3)当t=1时,连接AC、MN交于点P,在平面内是否存在点Q,使得以点N、P、A、Q为顶点的四边形是平行四边形?如果存在,直接写出点Q的坐标;如果不存在,请说明理由.
黎巎回答:
,
解得t=4
∴t=4时,直线MN将梯形OABC的面积分成1:2两部分.
(3)存在满足条件的Q点,如图:Q(9.5,2),Q1(8.5,-2),Q2(0.5,6).
点击显示
其它推荐
热门其它推荐