问题标题:
设a为3阶方阵,-2和6是a的特征值,且|e-3a|=0,证明a是可逆阵,且与对角阵相似.
问题描述:
设a为3阶方阵,-2和6是a的特征值,且|e-3a|=0,证明a是可逆阵,且与对角阵相似.
刘莉萍回答:
由|E-3A|=0知道|1/3*E-A|=0,根据特征值定义可知1/3是矩阵A的一个特征值.因为3阶矩阵只有3个特征值,所以矩阵A的全部特征值就是-2,6和1/3.因为矩阵的行列式就是它所有特征值的乘积,所以矩阵A的行列式为-1,不...
点击显示
数学推荐
热门数学推荐