问题标题:
【设数列{an}满足a1=2,a2+a5=14,且对任意n∈N*,函数f(x)=an+1x2-(an+2+an)x满足f′(1)=0.(1)求数列{an}的通项公式;(2)设bn=1(an-1)(an+1),记数列{bn}的前n项和为Sn,求证Sn<12.】
问题描述:
设数列{an}满足a1=2,a2+a5=14,且对任意n∈N*,函数f(x)=an+1x2-(an+2+an)x满足f′(1)=0.
(1)求数列{an}的通项公式;
(2)设bn=
蒋崇武回答:
(1)函数f(x)=an+1x2-(an+2+an)x的导数为f′(x)=2an+1x-(an+2+an),
由f′(1)=0,可得2an+1=an+2+an,
由等差数列的性质可得数列{an}为等差数列,设公差为d,
则a1=2,a2+a5=2a1+5d=14,
解得d=2,
即有an=a1+2(n-1)=2n.
(2)证明:bn=1(a
点击显示
数学推荐
热门数学推荐