问题标题:
【初二数学题一道(分式)∵1/(1×3)=1/2(1-1/3),1/(3×5)=1/2(1/3-1/5),1/(5×7)=1/2(1/5-1/7)∴(1/(1×3))+(1/(3×5))+(1/(5×7))+……+1/(2001×2003)=1/2(1-1/3+1/3-1/5+……+1/2001-1/2003)(1).】
问题描述:
初二数学题一道(分式)
∵1/(1×3)=1/2(1-1/3),1/(3×5)=1/2(1/3-1/5),1/(5×7)=1/2(1/5-1/7)
∴(1/(1×3))+(1/(3×5))+(1/(5×7))+……+1/(2001×2003)=1/2(1-1/3+1/3-1/5+……+1/2001-1/2003)
(1).在(1/(1×3))+(1/(3×5))+……中,第5项为_______,第N项为_________.
(2).利用上述结论计算
(1/X(X+2))+(1/(X+2)(X+4))+(1/(X+4)(X+6))+……+(1/(X+2001)(X+2003))
何健廉回答:
1/11*131/(2n-1)*(2n+1)
(1/X(X+2))+(1/(X+2)(X+4))+(1/(X+4)(X+6))+……+(1/(X+2001)(X+2003))=1/2(1/X-1/x+2+1/x+2-1/X+4+1/X+4.+1/X+2001-1/X+2003)
=2003/2x平方-4006x
点击显示
数学推荐
热门数学推荐