问题标题:
已知圆锥曲线C上任意一点到两定点F1(-1,0)、F2(1,0)的距离之和为常数,曲线C的离心率e=1/2⑴求曲线C已知圆锥曲线C上任意一点到两定点F1(-1,0)、F2(1,0)的距离之和为常数,曲线C的离心
问题描述:
已知圆锥曲线C上任意一点到两定点F1(-1,0)、F2(1,0)的距离之和为常数,曲线C的离心率e=1/2⑴求曲线C
已知圆锥曲线C上任意一点到两定点F1(-1,0)、F2(1,0)的距离之和为常数,曲线C的离心率e=1/2
⑴求曲线C
⑵设经过点F2的任意一条直线与圆锥曲线C相交于A、B,试证明在x轴上存在一个点P,使向量PA*向量PB的值是常数
第二个问能做张图吗?
关志伟回答:
1、是个椭圆,且c=1,a=2,从而其方程是x²/4+y²/3=1;2、设此直线是y=k(x-1).则此直线与椭圆连结方程组,消去y,得到:(4k²+3)x²-8k²x+(4k²-12)=0,令P(m,0),则PA*PB=(x1-m)(x2-m)...
点击显示
数学推荐
热门数学推荐