问题标题:
(文)已知一个动圆与圆M1:(x+1)2+y2=1外切,同时又与圆M2:(x-1)2+y2=25内切.(Ⅰ)求动圆圆心M的轨迹C的方程;(II)设经过圆M1的圆心且不与坐标轴垂直的直线交(Ⅰ)
问题描述:
(Ⅰ)求动圆圆心M的轨迹C的方程;
(II)设经过圆M1的圆心且不与坐标轴垂直的直线交(Ⅰ)中的轨迹C于两点A、B,线段AB的垂直平分线与x轴交于点G,求G点横坐标的取值范围.
黄钢回答:
(I)不妨记圆M1,M2的圆心分别为M1,M2
由题意可知,动圆M与定圆与定圆M1相外切与定圆M2相内切
∴MM1=r+1,MM2=5-r(2分)
∴MM1+MM2=6>M1M2=2(3分)
∴动圆圆心M的轨迹是以M1,M2为焦点的椭圆
由椭圆的定义可知,c=1,a=3,b2=a2-c2=8(4分)
∴所求的轨迹C的方程为x
点击显示
数学推荐
热门数学推荐