字典翻译 问答 高中 数学 【高等数学“若f'(x)=sin(sin(x+1)),f(0)=4,则dx/dyly=4=?”】
问题标题:
【高等数学“若f'(x)=sin(sin(x+1)),f(0)=4,则dx/dyly=4=?”】
问题描述:

高等数学“若f'(x)=sin(sin(x+1)),f(0)=4,则dx/dyly=4=?”

陈联淦回答:
  dy/dx=sin(sin(x+1))   所以dx/dy=1/sin(sin(x+1))   因为x=0时y=4   所以存在dx/dy|y=4=dx/dy|x=0=1/sinsin1   但如果f(x)连续   因为f'(2pi-1-x)=sinsin(2pi-2-x+1)=sinsin(-1-x)=-f'(x)   所以∫(0,2pi-2)f'(x)dx   =∫(0,pi-1)+∫(pi-1,2pi-2)f'(x)dx   =∫(0,pi-1)f'(x)dx+∫(0,pi-1)f'(x-pi-1)dt----t=x-(pi-1)   =∫(0,pi-1)f'(x)dx-∫(0,pi-1)f'(t)dt=0   所以f(2pi-2)=f(0)=4   dx/dy|y=4=dy/dx|x=2pi-2=-1/sinsin1   所以原式=±1/sinsin1
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考