字典翻译 问答 小学 数学 已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求
问题标题:
已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求
问题描述:

已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在

已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.

(Ⅰ)求a,b,c,d的值;

(Ⅱ)若x≥-2时,f(x)≤kg(x),求k的取值范围.

(I)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,

而f′(x)=2x+a,g′(x)=ex(cx+d+c),故b=2,d=2,a=4,d+c=4,

从而a=4,b=2,c=2,d=2;

(II)由(I)知,f(x)=x2+4x+2,g(x)=2ex(x+1)

设F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1),

由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=-lnk,x2=-2,

(i)若1≤k≤e2,则-2<x1≤0,从而当x∈(-2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,

即F(x)在(-2,x1)上减,在(x1,+∞)上是增,故F(x)在[-2,+∞)上的最小值为F(x1),

而F(x1)=-x1(x1+2)≥0,x≥-2时F(x)≥0 即f(x)≤kg(x)恒成立,

(ii)若k=e2,则F′(x)=2e2(x+2)(ex-e-2),从而当x∈(-2,+∞)时,F′(x)>0,

即F(x)在(-2,+∞)上是增,而f(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立,

(i)ii若k>e2时,不符合函数的定义域,故当x≥-2时,f(x)≤kg(x)不可能成立,

综上,k的取值范围是[1,e2].

但第二问有疑惑就是为什么它由题设得到的F(0)≥0,我的意思是它为什么就知道k最小值是在x=0处取的呢?为什么不写由题设得F(1)≥0呢?

标准答案可在网上搜到,www.jyeoo.com/math2/ques/detail/a97f8ce6-d47a-4512-9674-d6d669b4d138

郭瑜茹回答:
  不是要求x>=-2时,f(x)=-2时,F(x)=kg(x)-f(x)>=0   因为0>=-2,所以必然要F(0)>=0   解出来k>=1   那个在k=1取到最小值,是最后分类讨论出来的结果.没有什么必然的联系.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文