问题标题:
(2014•松江区二模)如图,已知在△ABC中,AB=AC,BC=8,tan∠ABC=3,AD⊥BC于D,O是AD上一点,OD=3,以OB为半径的⊙O分别交AB、AC于E、F.求:(1)⊙O的半径;(2)BE的长.
问题描述:
(2014•松江区二模)如图,已知在△ABC中,AB=AC,BC=8,tan∠ABC=3,AD⊥BC于D,O是AD上一点,OD=3,以OB为半径的⊙O分别交AB、AC于E、F.求:
(1)⊙O的半径;
(2)BE的长.
廖伟志回答:
(1)∵AB=AC,AD⊥BC,BC=8,
∴BD=CD=4,
在RT△BOD中∵OD=3,
∴由勾股定理得:OB=5;
(2)过O点作OH⊥AB,交AB于H,
又∵OH过圆心O,
∴BH=EH,
∵在RT△ABD中,tan∠ABD=ADBD=3
点击显示
其它推荐