问题标题:
设二次函数y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1-x2)=dB.a(x2-x1)=dC.a(x1-x
问题描述:
设二次函数y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()
A.a(x1-x2)=d
B.a(x2-x1)=d
C.a(x1-x2)2=d
D.a(x1+x2)2=d
耿兆丰回答:
∵一次函数y2=dx+e(d≠0)的图象经过点(x1,0),
∴dx1+e=0,
∴y2=d(x-x1),
∴y=y1+y2=a(x-x1)(x-x2)+d(x-x1)
=ax2-axx2-ax1x+ax1x2+dx-dx1
=ax2+(d-ax2-ax1)x+ax1x2-dx1
∵当x=x1时,y1=0,y2=0,
∴当x=x1时,y=y1+y2=0,
∵y=ax2+(d-ax2-ax1)x+ax1x2-dx1与x轴仅有一个交点,
∴y=y1+y2的图象与x轴的交点为(x1,0)
∴-d-ax
点击显示
数学推荐
热门数学推荐