问题标题:
(2012•威海二模)函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t度低调函数.已知定义域为[0,+∞)的函数f(x)=-|
问题描述:
(2012•威海二模)函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t度低调函数.已知定义域为[0,+∞)的函数f(x)=-|mx-3|,且f(x)为[0,+∞)上的6度低调函数,那么实数m的取值范围是()
A.[0,1]
B.[1,+∞)
C.(-∞,0]
D.(-∞,0]∪[1,+∞)
黄文斌回答:
根据题意,-|m(x+6)-3|≤-|mx-3|在[0,+∞)上恒成立
∴m(x+6)-3≥-mx+3或,m(x+6)-3≤mx-3在[0,+∞)上恒成立
∴m≥1或m≤0
故选D.
点击显示
其它推荐
热门其它推荐