问题标题:
数列An=1/n,{An}的前n项和是什么?问题超出高中所学知识范围,不需要推导过程,有结果就行.我在高中数学课本上见过,不过忘了.
问题描述:
数列An=1/n,{An}的前n项和是什么?
问题超出高中所学知识范围,不需要推导过程,有结果就行.我在高中数学课本上见过,不过忘了.
毛峡回答:
调和级数S=1+1/2+1/3+……是发散的,证明如下:
由于ln(1+1/n)ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)
=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]
=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)
由于
limSn(n→∞)≥limln(n+1)(n→∞)=+∞
所以Sn的极限不存在,调和级数发散.
但极限S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)却存在,因为
Sn=1+1/2+1/3+…+1/n-ln(n)>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)-ln(n)
=ln(n+1)-ln(n)=ln(1+1/n)
由于
limSn(n→∞)≥limln(1+1/n)(n→∞)=0
因此Sn有下界
而
Sn-S(n+1)=1+1/2+1/3+…+1/n-ln(n)-[1+1/2+1/3+…+1/(n+1)-ln(n+1)]
=ln(n+1)-ln(n)-1/(n+1)=ln(1+1/n)-1/(n+1)>ln(1+1/n)-1/n>0
所以Sn单调递减.由单调有界数列极限定理,可知Sn必有极限,因此
S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)存在.
于是设这个数为γ,这个数就叫作欧拉常数,他的近似值约为0.57721566490153286060651209,目前还不知道它是有理数还是无理数.
于是我们得到Sn的公式是:Sn=lnn+γ
在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等.
点击显示
数学推荐
热门数学推荐