字典翻译 问答 小学 数学 【设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0,2)使得f(x)=0】
问题标题:
【设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0,2)使得f(x)=0】
问题描述:

设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0,2)使得f(x)=0

桂宁回答:
  f(0)+f(1)=2,   [f(0)+f(1)]/2=1,由介值性定理:至少存在c属于[0,1],使f(c)=[f(0)+f(1)]/2=1   由于f(2)=1,由罗尔定理:至少存在一点x属于(c,2)(x属于(0,2))使得f’(x)=0
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文