问题标题:
【等差数列an中,a1=3/2.d=1.前n项和为Sn.求1/s1+1/s2+...+1/Sn求和用裂项相消除法】
问题描述:
等差数列an中,a1=3/2.d=1.前n项和为Sn.求1/s1+1/s2+...+1/Sn
求和用裂项相消除法
孙滨生回答:
等差数列an中,a1=3/2.d=1
∴Sn=na1+n(n-1)*d/2
=(3/2)n+(n²-n)/2
=(n²+2n)/2
∴1/Sn=2/(n²+2n)=2/[n(n+2)]=1/n-1/(n+2)
∴1/s1+1/s2+...+1/Sn
=1/1-1/3+1/2-1/4+1/3-1/5+.+1/(n-1)-1/(n+1)+1/n-1/(n+2)
=1+1/2-1/(n+1)-1/(n+2)
=3/2-1/(n+1)-1/(n+2)
点击显示
数学推荐
热门数学推荐