问题标题:
【如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG】
问题描述:
如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M. (1)求证:△EGM为等腰三角形; (2)判断线段BG、AF与FG的数量关系并证明你的结论. |
毛建兵回答:
解(1)∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,又∵AD=AE,∠CAD=∠BAE,∵△ACD≌△ABE(SAS),∴∠1=∠3,∵∠BAC=90°,∴∠3+∠2=90°,∠1+∠4=90°,∴∠4+∠3=90°∴FG⊥CD,∵∠CMF+∠4=90°,∴∠3=∠CMF,∴∠GEM=∠GME,∴EG=MG,∴△EGM为等腰三角形.(2)答:线段BG、AF与FG的数量关系为BG=AF+FG.证明:过点B作AB的垂线,交GF的延长线于点N,∵BN⊥AB,∠ABC=45°,∴∠FBN=45°=∠FBA.∵FG⊥CD,∴∠BFN=∠CFM=90°﹣∠DCB,∵AF⊥BE,∴∠BFA=90°﹣∠EBC,∠5+∠2=90°,由(1)可得∠DCB=∠EBC,∴∠BFN=∠BFA,又∵BF=BF,∴△BFN≌△BFA(ASA),∴NF=AF,∠N=∠5,又∵∠GBN+∠2=90°,∴∠GBN=∠5=∠N,∴BG=NG,又∵NG=NF+FG,∴BG=AF+FG.故答案为:BG=AF+FG.
点击显示
数学推荐
热门数学推荐