问题标题:
【如图,设圆O1与圆O2的半径分别为3和2,O1O2=4,A,B味两圆的交点,试求两圆的公共弦AB的长度】
问题描述:
如图,设圆O1与圆O2的半径分别为3和2,O1O2=4,A,B味两圆的交点,试求两圆的公共弦AB的长度
陈燕晖回答:
连接分别O1、O2,A、B,相交于点D.
设:DO1为x,DO2为y.
即x+y=4;
因为AB与0102垂直,
所以9-xx=4-yy
即x=21/8,y=11/8
DA*DA=AO1*A01-D01*D01
=9-441/64
=135/64
因为AB=2DA
所以AB等于四分之三根号下十五
数学推荐
热门数学推荐