字典翻译 问答 小学 数学 (1)探究新知:①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点。求证:△ABM与△ABN的面积相等;②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线E
问题标题:
(1)探究新知:①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点。求证:△ABM与△ABN的面积相等;②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线E
问题描述:

(1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点。
求证:△ABM与△ABN的面积相等;

②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由。

(2)结论应用:
如图③,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标,若不存在,请说明理由。(友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论。)

李新卫回答:
  (1)①证明:分别过点M,N作ME⊥AB,NF⊥AB,垂足分别为点E,F,∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,∴AB∥CD,∴ME=NF,∵S△ABM=,S△ABN=,∴S△ABM=S△ABN,②相等,理由如下:分...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文