问题标题:
【用数学归纳法证明对于足够大的自然数n总有2^n>n^3时验证第一步不等式成立时所取的第一个值no最小应为】
问题描述:
用数学归纳法证明对于足够大的自然数n总有2^n>n^3时验证第一步不等式成立时所取的第一个值no最小应为
李国和回答:
先看第二部
n=k成立
则2^(k+1)=2^k*2>2k³
则显然要证明2k³>(k+1)³
即(k*2的立方根)³>(k+1)³
k*2的立方根>k+1
k>1/(2的立方根-1)
1/(2的立方根-1)约等于3.8
所以n最小是4
点击显示
数学推荐
热门数学推荐