问题标题:
已知a是实数,函数f(x)=x2(x-a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值.
问题描述:
已知a是实数,函数f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值.
慎乃光回答:
(I)f'(x)=3x2-2ax.因为f'(1)=3-2a=3,所以a=0.又当a=0时,f(1)=1,f'(1)=3,则切点坐标(1,1),斜率为3所以曲线y=f(x)在(1,f(1))处的切线方程为y-1=3(x-1)化简得3x-y-2=0.(II)令f'(x)=0...
点击显示
数学推荐
热门数学推荐