问题标题:
【命题p:∀x∈(1,+∞),函数f(x)=|log2x|的值域为[0,+∞);命题q:∃m≥0,使得y=sinmx的周期小于,试判断p∨q,p∧q,p的真假性.】
问题描述:
命题p:∀x∈(1,+∞),函数f(x)=|log2x|的值域为[0,+∞);命题q:∃m≥0,使得y=sinmx的周期小于,试判断p∨q,p∧q,p的真假性. |
黄先日回答:
p∨q为真命题,p∧q为假命题,p为真命题.
对于命题p,当f(x)=|log2x|=0时,log2x=0,即x=1,1∉(1,+∞),故命题p为假命题.对于命题q,y=sinmx的周期T=<,即|m|>4,故m<-4或m>4,故存在,m≥0,使得命题q成立,所以p且q为假命题.故p∨q为真命题,p∧q为假命题,p为真命题.
点击显示
数学推荐
热门数学推荐