问题标题:
【概念:如果一个n×n矩阵(教材中表现为方格图)的每行,每列及两条对角线的元素之和都相等,且这些元素都是从1到n的自然数,这样的矩阵就称为n阶幻方.有关幻方问题的研究在我国已流】
问题描述:
概念:如果一个n×n矩阵(教材中表现为方格图)的每行,每列及两条对角线的元素之和都相等,且这些元素都是从1到n的自然数,这样的矩阵就称为n阶幻方.有关幻方问题的研究在我国已流传了两千多年,这是一类形式独特的填数字问题.下面介绍一种构造三阶幻方方法---杨辉法:(如图(1))口诀:“九子斜排,上下对易,左右相更,四维挺出”
学以致用:
(1)请你将下列九个数:-18、-16、-14、-12、-10、-8、-6、-4、-2,分别填入方格1中,使得每行、每列、每条对角线上的三个数之和都相等;
(2)将方格2中左边方格中的9个数填入右边方格中,使每一行、每一列、每条对角线中的三个数相加的和相等;
(3)将9个连续自然数填入方格3的方格内,使每一横行、每一竖行及两条对角线的3个数之和都等于60;
(4)用-3~5这九个数补全方格4中的幻方.
方格1
8 | 8 | 8 |
10 | 10 | 10 |
李莹回答:
(1)按照口诀:“九子斜排,上下对易,左右相更,四维挺出”得出方格1:-8-18-4-6-10-14-16-2-12(2)按照口诀:“九子斜排,上下对易,左右相更,四维挺出”得出结论:810668101068(3)设9个连续自然数中第5个数...
点击显示
数学推荐
热门数学推荐