问题标题:
对于给定的正整数n和正数R,若等差数列a1,a2,a3,…满足a21+a22n+1≤R,则S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值为___
问题描述:
对于给定的正整数n和正数R,若等差数列a1,a2,a3,…满足a
1
2n+1
范逊回答:
数列{an}等差数列,∴a2n+1+a4n+1=a2n+2+a4n=…2a3n+1,∴S=(2n+1)a3n+1,∵a 21+a22n+1=(a3n+1-3nd)2+(a3n+1-nd)2≤R,化简得:2a23n+1-8dna3n+1+10n2d2-R≤0,关于d的二次方程,10n2d2-8dna3n+1+2a23n+1-R≤0,...
点击显示
数学推荐
热门数学推荐