问题标题:
设集合A2n={1,2,3,…,2n}(n∈N*,n≥2).如果对于A2n的每一个含有m(m≥4)个元素的子集P,P中必有4个元素的和等于4n+1,称正整数m为集合A2n的一个“相关数”.(Ⅰ)当n=3时,判断5和6
问题描述:
设集合A2n={1,2,3,…,2n}(n∈N*,n≥2).如果对于A2n的每一个含有m(m≥4)个元素的子集P,P中必有4个元素的和等于4n+1,称正整数m为集合A2n的一个“相关数”.
(Ⅰ)当n=3时,判断5和6是否为集合A6的“相关数”,说明理由;
(Ⅱ)若m为集合A2n的“相关数”,证明:m-n-3≥0;
(Ⅲ)给定正整数n.求集合A2n的“相关数”m的最小值.
傅佑麟回答:
(Ⅰ)当n=3时,A6={1,2,3,4,5,6},4n+1=13,
①对于A6的含有5个元素的子集{2,3,4,5,6},
因为2+3+4+5>13,
所以5不是集合A6的“相关数”;
②A6的含有6个元素的子集只有{1,2,3,4,5,6},
因为1+3+4+5=13,
所以6是集合A6的“相关数”.
(Ⅱ)考察集合A2n的含有n+2个元素的子集B={n-1,n,n+1,…,2n},
B中任意4个元素之和一定不小于(n-1)+n+(n+1)+(n+2)=4n+2.
所以n+2一定不是集合A2n的“相关数”;
所以当m≤n+2时,m一定不是集合A2n的“相关数”,
因此若m为集合A2n的“相关数”,必有m≥n+3,
即若m为集合A2n的“相关数”,必有m-n-3≥0;
(Ⅲ)由(Ⅱ)得 m≥n+3,
先将集合A2n的元素分成如下n组:
Ci=(i,2n+1-i),(1≤n),
对A2n的任意一个含有n+3个元素的子集p,
必有三组C
点击显示
数学推荐
热门数学推荐