问题标题:
高中数学知识整个体系脉络或框架
问题描述:
高中数学知识整个体系脉络或框架
高成志回答:
高考数学基础知识汇总
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;
(2)注意:讨论的时候不要遗忘了的情况.
(3)
第二部分函数与导数
1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一.
2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;
⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.
注意:外函数的定义域是内函数的值域.
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论.
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
①在区间上是增函数当时有;
②在区间上是减函数当时有;
⑵单调性的判定
1定义法:
注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;
②导数法(见导数部分);
③复合函数法(见2(2));
④图像法.
注:证明单调性主要用定义法和导数法.
7.函数的周期性
(1)周期性的定义:
对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期.
所有正周期中最小的称为函数的最小正周期.如没有特别说明,遇到的周期都指最小正周期.
(2)三角函数的周期
①;②;③;
④;⑤;
⑶函数周期的判定
①定义法(试值)②图像法③公式法(利用(2)中结论)
⑷与周期有关的结论
①或的周期为;
②的图象关于点中心对称周期为2;
③的图象关于直线轴对称周期为2;
④的图象关于点中心对称,直线轴对称周期为4;
8.基本初等函数的图像与性质
⑴幂函数:(;⑵指数函数:;
⑶对数函数:;⑷正弦函数:;
⑸余弦函数:;(6)正切函数:;⑺一元二次函数:;
⑻其它常用函数:
1正比例函数:;②反比例函数:;特别的
2函数;
9.二次函数:
⑴解析式:
①一般式:;②顶点式:,为顶点;
③零点式:.
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号.
⑶二次函数问题解决方法:①数形结合;②分类讨论.
10.函数图象:
⑴图象作法:①描点法(特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换:
1平移变换:ⅰ,2———“正左负右”
ⅱ———“正上负下”;
3伸缩变换:
ⅰ,(———纵坐标不变,横坐标伸长为原来的倍;
ⅱ,(———横坐标不变,纵坐标伸长为原来的倍;
4对称变换:ⅰ;ⅱ;
ⅲ;ⅳ;
5翻转变换:
ⅰ———右不动,右向左翻(在左侧图象去掉);
ⅱ———上不动,下向上翻(||在下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x,y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x)(x∈R)y=f(x)图像关于直线x=对称;
特别地:f(a+x)=f(a-x)(x∈R)y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
12.函数零点的求法:
⑴直接法(求的根);⑵图象法;⑶二分法.
13.导数
⑴导数定义:f(x)在点x0处的导数记作;
⑵常见函数的导数公式:①;②;③;
④;⑤;⑥;⑦;
⑧.
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ是增函数;ⅱ为减函数;
ⅲ为常数;
③利用导数求极值:ⅰ求导数;ⅱ求方程的根;ⅲ列表得极值.
④利用导
点击显示
数学推荐
热门数学推荐