字典翻译 问答 小学 数学 n属于N+,n>=15,集合AB都是I={1,2,3...n}的真子集,A交B=空集,A并B=I,证明:集合A或B中,必有两个不数,它们的和为完全平方数.
问题标题:
n属于N+,n>=15,集合AB都是I={1,2,3...n}的真子集,A交B=空集,A并B=I,证明:集合A或B中,必有两个不数,它们的和为完全平方数.
问题描述:

n属于N+,n>=15,集合AB都是I={1,2,3...n}的真子集,A交B=空集,A并B=I,证明:集合A或B中,必有两个不

数,它们的和为完全平方数.

彭正森回答:
  n属于N+,n>=15,集合A,B都是I={1,2,3,...,n}的真子集.A∩B=空集.A∪B=I,证明:集合A或B中.必有两个不同的数.它们的和为完全平方数.证明反证法,假设在集合A或B中,不存在两个不同的数,它们的和为完全平方数.不失一般...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文