问题标题:
【F(x)=(根号3/2)sin2x-cos^2x-1/2.1.当x属于【-π/12,5π/12】,f(x)的最值.2.三角形ABC,对应边abc.c=根号3,f(C)=0.向量m=(1.sinA)与向量n=(2.sinB)共线,求a,b.】
问题描述:
F(x)=(根号3/2)sin2x-cos^2x-1/2.
1.当x属于【-π/12,5π/12】,f(x)的最值.
2.三角形ABC,对应边abc.c=根号3,f(C)=0.向量m=(1.sinA)与向量n=(2.sinB)共线,求a,b.
李建春回答:
1、由公式cos2x=2(cosx)^2-1即(cosx)^2=0.5cos2x+0.5可知,f(x)=√3/2sin2x-0.5cos2x-1=sin(2x-π/6)-1x属于[-π/12,5π/12],所以2x-π/6属于[-π/3,2π/3]显然当2x-π/6=π/2,即x=π/3时,f(x)取最大值,f(π/3)...
点击显示
数学推荐
热门数学推荐