问题标题:
高中数学已知函数y=(mx^2+4根3+n)/(x^2+1)的最大值为7,最小值为-1,求此函数式谢拉最好有过程
问题描述:
高中数学
已知函数y=(mx^2+4根3+n)/(x^2+1)的最大值为7,最小值为-1,求此函数式
谢拉最好有过程
林舒静回答:
已知函数y=(mx^2+4√3x+n)/(x^2+1)有最大值为7,最小值为-1,就是函数的值域是[-1,7]原函数--->(y-m)x^2-4√3x+(y-n)=0中对于给定的y都有x存在,所以此方程的判别式△=48-4(y-m)(y-n)=0--->y^2-(m+n)x+(mn-12)=0有二根...
点击显示
数学推荐
热门数学推荐